更多>>人气最旺专家

张亚龙

领域:中国贸易新闻

介绍:DILI是常见的药物不良反应之一,约占所有药物不良反应的10%~15%。...

朱丽叶特比诺什

领域:蜀南在线

介绍:椎间盘微创手术系统——椎间孔镜什么是椎间盘突出症?椎间盘突出症:是临床上较为常见的脊柱疾病之一。亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉

利来国际网站
本站新公告亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉
qn8 | 2019-01-20 | 阅读(361) | 评论(254)
北语18秋《中小企业管理》作业4-试卷总分:100得分:100一、单选题(共15道试题,共45分)1.企业进入国际市场时的选择应考虑以下因素。【阅读全文】
亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉
h8s | 2019-01-20 | 阅读(998) | 评论(419)
股权方案永续委托贷款并购贷款PE基金永续债*目录ClicktoaddTitle的的几点思考几点思考政府融资平台贷款风险特点ClicktoaddTitlePPP模式概述当前PPP工作进展对PPP业务的几点思考政府融资平特点PPP模式金融服务方案**案例一北京地铁16号线目前北京已运营线路16条,总计里程442公里十六号线全长50公里,总投资537亿元,计划2017年12月底全线建成通车16号线北安河至宛平城计划开通时间2017年12月线路全长(公里)50km(南段26km,北段24km)车站数24(其中23座地下站)换乘站24最小运行间隔(分钟)3*案列一北京地铁16号线业主:北京市政府授权北京市交通委与中标人签署特许协议京投受市交通委委托协助本次招商及后期实施工作总投资537亿元,按照7:3比例划分为A、B两个部分A部分投资387亿元,占总投资70%,主要包括洞体、轨道等土建部分,由政府投资B部分投资150亿元,占总投资30%,主要包括车辆、信号等机电设备,由社会投资人投资,按PPP模式实行特许经营中【阅读全文】
fv7 | 2019-01-20 | 阅读(320) | 评论(701)
各国医生年收入与周工作时间各国医务人员薪酬占医院成本比例*年收入(万美元)周工作时间(小时)医改的必要性医务人员薪酬制度不科学、激励机制不合理,收入与付出不对等床位数13201200年急诊人次220,00079,542医师、研究人员80019692,761,10062,400年住院手术量40,00029,833北京某三甲医院美国梅奥医院案例:中美医院取样对比*年就诊人次2761,100*医改方向围绕医疗的公益性质,健全覆盖城乡居民的基本医疗卫生制度。【阅读全文】
wtf | 2019-01-20 | 阅读(672) | 评论(95)
污染的液体在排放到生活污水管道以前必须清除污染(采用化学或物理学方法)。【阅读全文】
jqc | 2019-01-20 | 阅读(905) | 评论(491)
(4)美国纽约①纽约第七大道王子—卡尔文·克莱恩(CalvinKlein1942~今)卡尔文·克莱恩——纽约第七大道王子/设计风格: 卡尔文·克莱恩是一个完美主义者,除了要求服装作品及广告宣传细节部分符合他原先的想法外,也极力保持自己整洁完美的形象,喜欢土色及中间色调,甚至连他个人生活物件都是褐色及白色系列。【阅读全文】
uvm | 2019-01-19 | 阅读(200) | 评论(724)
在学校学习时,做头及双上肢的前屈、后伸及旋转运动,既可缓解疲劳,又能使肌肉发达,韧度增强,从而有利于颈段脊柱的稳定性,增强颈肩顺应颈部突然变化W的能力。【阅读全文】
tbs | 2019-01-19 | 阅读(191) | 评论(644)
命题角度2 求概率分布例4 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X表示取出的3个球中的最小号码,写出随机变量X的概率分布.解答解 随机变量X的可能取值为1,2,3.因此,X的概率分布如下表:引申探究若将本例条件中5个球改为6个球,最小号码改为最大号码,其他条件不变,试写出随机变量X的概率分布.解答所以随机变量X的概率分布如下表: 随机变量及其概率分布第2章 概率学习目标1.理解随机变量的含义,了解随机变量与函数的区别与联系.2.理解随机变量x的概率分布,掌【阅读全文】
6jf | 2019-01-19 | 阅读(749) | 评论(517)
语言形成的机制人类在对现实世界进行互动体验的基础上经过认知加工逐步形成了范畴、概念和意义,此时再用语言符号将其固定下来就形成了语言。【阅读全文】
亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉,亚美娱乐优惠永远多一点荣誉
qm7 | 2019-01-19 | 阅读(584) | 评论(275)
习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8【阅读全文】
s7b | 2019-01-18 | 阅读(203) | 评论(559)
例如TCR和粘附分子表达增加,易产生激活在抗原持久刺激下,BCR或TCR亲和力经抗原选择后而增高易发生免疫调节紊乱2.免疫调节异常一)多克隆刺激剂的旁路活化:微生物或其产物非特异性地直接诱导B细胞产生自身抗体二)MHCII类抗原的异常表达:IFN-g、IL-1、IL-2、MHCII↑三)辅助刺激因子表达异常(增高):B7↑四)Th比例失调或功能失衡:Th1功能亢进-IDDM、MSTh2功能亢进-抗体介导的自身免疫病如SLE抗凋亡现象:1)凋亡是维持自身稳定的重要机制2)自身反应性细胞凋亡障碍是自身免疫性疾病发病的关键因素之一五)Fas、FasL表达异常:自身免疫病易感性的遗传因素主要组织相容性复合体基因免疫球蛋白基因T细胞受体基因细胞因子基因Th1和Th2不平衡凋亡基因lpr、lprcg、gldY染色体连锁自身免疫性加速基因Yaa/影响B细胞粘附因子的表达-低亲合力Th与B结合-Aag胞质酪氨酸磷酸酶基因系统造血和免疫系统异常自身免疫病的组织损伤机制自身抗体介导Ⅱ型超敏反应自身【阅读全文】
hy5 | 2019-01-18 | 阅读(590) | 评论(819)
 有梅无雪不精神,有雪无诗俗了人。【阅读全文】
rnv | 2019-01-18 | 阅读(608) | 评论(972)
为了使规划得到顺利的实施,乡党委、政府把普法依法治乡工作纳入年度综合目标考核。【阅读全文】
seq | 2019-01-18 | 阅读(936) | 评论(911)
参赛队员签名:林川曹旭雷曹存凯带队教师签名:张晓冬日期:2014年8月II摘要本文以历届全国大学生智能车竞赛为背景,介绍了两轮直立自平衡智能车的软硬件结构的开发流程。【阅读全文】
6rz | 2019-01-17 | 阅读(80) | 评论(977)
习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8【阅读全文】
pcj | 2019-01-17 | 阅读(785) | 评论(305)
在学校学习时,做头及双上肢的前屈、后伸及旋转运动,既可缓解疲劳,又能使肌肉发达,韧度增强,从而有利于颈段脊柱的稳定性,增强颈肩顺应颈部突然变化W的能力。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-20

w66.cm利来国际 w66利来国际 w66.com 利来最给利的网站 利来国际老牌w66
www.w66.com 利来 w66.C0m 利来国际w66最新 利来国际w66最新 利来国际在线客服
利来国际旗舰版 利来国际老牌 利来国际手机版 利来国际旗舰版 利来国际ag旗舰厅app
w66利来娱乐公司 w66利来娱乐 利来国际老牌博彩 利来国际手机版 利来国际旗舰厅app
武川县| 海宁市| 花垣县| 高要市| 凤山市| 巴彦县| 三河市| 鄯善县| 什邡市| 全椒县| 隆林| 上犹县| 祁门县| 罗山县| 格尔木市| 叶城县| 景谷| 洛隆县| 乐清市| 宁波市| 武汉市| 洞口县| 和平县| 商丘市| 休宁县| 武胜县| 紫阳县| 宜黄县| 陆川县| 揭东县| 西贡区| 永昌县| 星子县| 奉化市| 墨江| 资溪县| 清镇市| 普定县| 方正县| 远安县| 德惠市| http://m.86968084.cn http://m.44840206.cn http://m.67392086.cn http://m.43030999.cn http://m.99525927.cn http://m.95618235.cn